skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Berger, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Direct detection is a powerful means of searching for particle physics evidence of dark matter (DM) heavier than about a GeV with 𝒪(kiloton) volume, low-threshold detectors. In many scenarios, some fraction of the DM may be boosted to large velocities enhancing and generally modifying possible detection signatures. We investigate the scenario where 100% of the DM is boosted at the Earth due to new attractive long-range forces. This leads to two main improvements in detection capabilities: (1) the large boost allows for detectable signatures of DM well below a GeV at large-volume neutrino detectors, such as DUNE, Super-K, Hyper-K, and JUNO, as possible DM detectors, and (2) the flux at the Earth’s surface is enhanced by a focusing effect. In addition, the model leads to a significant anisotropy in the signal with the DM flowing dominantly vertically at the Earth’s surface instead of the typical approximately isotropic DM signal. We develop the theory behind this model and also calculate realistic constraints using a detailed GENIE simulation of the signal inside detectors. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. We study the sensitivity of fixed target experiments to hadronically coupled axionlike particles (ALPs) produced in kaon decays, with a particular emphasis on current and upcoming Short-Baseline Neutrino (SBN) experiments. We demonstrate that below the kaon decay mass threshold ( m a < m K m π ) kaon decay is the dominant production mechanism for ALPs at neutrino experiments, larger by many orders of magnitude than production in pseudoscalar mixing. Such axions can be probed principally by the diphoton and dimuon final states. In the latter case, even if the axion does not couple to muons at tree level, such a coupling is induced by the renormalization group flow from the UV scale. We reinterpret prior results by CHARM and MicroBooNE through these channels and show that they constrain new areas of heavy axion parameter space. We also show projections of the sensitivity of the SBN experiment and Deep Underground Neutrino Experiment (DUNE) to axions through these channels, which reach up to a decade higher in the axion decay constant beyond existing constraints. DUNE projects to have a sensitivity competitive with other world-leading upcoming experiments. Published by the American Physical Society2024 
    more » « less
  3. We introduce and study the first class of signals that can probe the dark matter in mesogenesis, which will be observable at current and upcoming large volume neutrino experiments. The well-motivated mesogenesis scenario for generating the observed matter-antimatter asymmetry necessarily has dark matter charged under the baryon number. Interactions of these particles with nuclei can induce nucleon decay with kinematics differing from spontaneous nucleon decay. We calculate the rate for this process and develop a simulation of the signal that includes important distortions due to nuclear effects. We estimate the sensitivity of DUNE, Super-Kamiokande, Hyper-Kamiokande, and JUNO to this striking signal. Published by the American Physical Society2024 
    more » « less
  4. Abstract Stochastic backgrounds of gravitational waves (GWs) from the pre-BBN era offer a unique opportunity to probe the universe beyond what has already been achieved with the Cosmic Microwave Background (CMB). If the source is short in duration, the low frequency tail of the resulting GW spectrum follows a universal frequency scaling dependent on the equation of state of the universe when modes enter the horizon. We demonstrate that the distortion of the equation of state due to massive particles becoming non-relativistic can lead to an observable dip in the GW spectrum. To illustrate this effect, we consider a first order chiral symmetry breaking phase transition in the weak-confined Standard Model (WCSM). The model features a large number of pions and mostly elementary fermions with masses just below the critical temperature for the phase transition.These states lead to a 20% dip in the GW power. We find potential sensitivity to the distortions in the spectrum to future GW detectors such as LISA, DECIGO, BBO, and μAres. 
    more » « less
  5. A bstract For a class of macroscopic dark matter models, inelastic scattering of dark matter off a nucleus can generate electromagnetic signatures with GeV-scale energy. The IceCube detector, with its kilometer-scale size, is ideal for directly detecting such inelastic scattering. Based on the slow particle trigger for the DeepCore detector, we perform a detailed signal and background simulation to estimate the discovery potential. For order 1 GeV deposited energy in each interaction, we find that IceCube can probe the dark matter masses up to one gram. 
    more » « less
  6. A bstract A novel mechanism, “catalyzed baryogenesis”, is proposed to explain the observed baryon asymmetry in our universe. In this mechanism, the motion of a ball-like catalyst provides the necessary out-of-equilibrium condition, its outer wall has CP-violating interactions with the Standard Model particles, and its interior has baryon number violating interactions. We use the electroweak-symmetric ball model as an example of such a catalyst. In this model, electroweak sphalerons inside the ball are active and convert baryons into leptons. The observed baryon number asymmetry can be produced for a light ball mass and a large ball radius. Due to direct detection constraints on relic balls, we consider a scenario in which the balls evaporate, leading to dark radiation at testable levels. 
    more » « less